SECURIT ! INFORMATION CONFIDENTIAL Copy 5 RM E51113 UNCLASSIFIED NACA FOR REFERENCE RESEARCH MEMORÁNDUM ALTITUDE WIND TUNNEL INVESTIGATION OF THE PERFORMANCE OF COMPRESSOR, COMBUSTOR, AND TURBINE COMPONENTS OF PROTOTYPE J47D (RX1-1) TURBOJET ENGINE By John M. Farley Lewis Flight Propulsion Laboratory Cleveland, Ohio CLASSIFICATION CHANGED To UNCLASSIFIED Ey authority of TPA # 14 effective This material contains information affecting the Skitonal Defence of the United States within the meaning of the explorage laws, This 18, U.S.C., Sees. 793 and 794, the transmission or revelation of which in any manner to unauthorized person is prohibited by law. NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON December 21, 1951 UNCLASSIFIED ACAN ## NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS ## RESEARCH MEMORANDUM ALITITUDE WIND TUNNEL INVESTIGATION OF THE PERFORMANCE OF COMPRESSOR, COMBUSTOR, AND TURBINE COMPONENTS OF PROTOTYPE J47D (RXL-1) TURBOJET ENGINE By John M. Farley #### SUMMARY As a portion of an over-all performance investigation of the prototype J47D (RXI-1) turbojet engine, the performance of compressor, combustor, and turbine components was determined in the Lewis altitude wind tunnel over a range of altitudes from 5000 to 55,000 feet and at flight Mach numbers from 0.19 to 0.92. Investigations were conducted with the engine operating on an electronic control schedule and also with a two-lever control system by which fuel flow and exhaust-nozzle area could be controlled separately. Two combustion-chamber configurations were investigated. Peak compressor efficiency occurred in the range of corrected engine speeds from 6000 to 6500 rpm for all flight conditions investigated. A maximum compressor efficiency of 86 percent was obtained at an altitude of 5000 feet, a flight Mach number of 0.19, and a corrected engine speed of 6000 rpm. Compressor efficiency decreased with increasing altitude because of the reduction in compressor Reynolds number. Reynolds number had no effect on corrected air flow at altitudes below 25,000 feet but at higher altitude air flow decreased with decreasing Reynolds number. When the engine speed or the flight Mach number was increased, or when the altitude was reduced, an increase occurred in combustion efficiency, primarily because of the corresponding increase in combustion-chamber inlet pressure and temperature. Combustion efficiencies for all flight conditions investigated correlated when plotted as a function of the fuel-air ratio and the combustion-chamber parameter $\frac{P_3T_3}{V_3}$ where P_3 , T_3 , and V_3 are the stagnation pressure, stagnation temperature, and velocity, respectively, at the combustor inlet. For engine speeds over 4000 rpm, turbine-efficiency values were between 79 and 86 percent for altitudes from 5000 to 55,000 feet and a flight Mach number of 0.19. Variations of exhaust-nozzle area or of flight Mach number from 0.19 to 0.92 had no appreciable effect on turbine efficiency. #### INTRODUCTION An extensive investigation was conducted in the NACA Lewis altitude wind tunnel to determine the over-all and component performance of the prototype J47D (RX1-1) turbojet engine. Previous investigations of an earlier model of the J47 turbojet engine are reported in references 1 to 5. The principal differences between these engines were: (1) The diameter of the first two stages of the compressor of the J47D turbojet engine was increased resulting in a rated-air-flow capacity about 3 percent greater than earlier models; (2) the prototype J47D (RX1-1) turbojet engine is equipped with an afterburner, a variable-area exhaust nozzle, and an integrated electronic control system. The investigation of the prototype J47D (RX1-1) was made to determine the effects of these changes, and to determine the altitude performance of the electronic control system. Engine performance and operational characteristics are reported in references 6 to 8. The steady-state performance characteristics of compressor, combustor, and turbine components while the engine was operating on the electronic control schedule at simulated altitudes from 5000 to 55,000 feet with a flight Mach number of 0.19, and with flight Mach numbers from 0.19 to 0.92 at an altitude of 25,000 feet is presented herein. In addition to the data obtained on the control schedule, data are presented showing the effect of varying the exhaust-nozzle area at each of several fixed engine speeds at simulated altitudes of 15,000 and 45,000 feet with a flight Mach number of 0.19. During the investigation, the engine combustion chambers were modified to improve the altitude starting characteristics. A comparison of the performance characteristics of the original and modified combustors is included herein. Component-performance data are presented in tabular form as well as graphical form. #### APPARATUS The J47D turbojet engine (without afterburning) has a sea-level static-thrust rating of 5670 pounds with an engine speed of 7950 rpm and a turbine-outlet-gas temperature of 1275° F. A more detailed description of the engine is given in reference 7. The electronic control was scheduled for a compromise between optimum steady-state performance and the desired acceleration characteristics of the engine. In steady-state operation without afterburning, engine speed and exhaust-nozzle area were considered scheduled as a function of the position of the thrust selector. Compressor. - The 12-stage axial-flow-compressor rotor (fig. 1(a)) has an outside diameter of 30.1 inches at the leading edge of the first-stage blading and from the third stage aft the blade tip diameter is constant at 28.9 inches. The compressor has a single row of inlet guide vanes and a double row of outlet guide vanes. The compressor rated air flow is 99 pounds per second at a pressure ratio of 5:1. Combustors. - Two combustor configurations were used in this investigation. In order to improve the altitude starting characteristics, the original combustors were modified by increasing the size of the cross-fire tubes (fig. 1(b)), by adding deep immersion, opposite polarity spark plugs and by adding baffles to some of the secondary air holes in the combustor liners to direct the air flow to the center of the combustion zone (fig. 1(c)). Each of the eight combustors had a duplex fuel nozzle to maintain a desirable fuel-spray pattern for both high and low fuel flows. An automatic flow divider distributed the fuel between the high-flow and the low-flow sections of the nozzles. <u>Turbine</u>. - The single-stage impulse turbine rotor had a tip diameter of 34.3 inches and a blade height of $3\frac{3}{4}$ inches. The turbine rotor is shown in figure 1(d). ## INSTALLATION AND INSTRUMENTATION <u>Installation</u>. - The engine was mounted on a wing in the wind-tunnel test section. Dry refrigerated air was supplied to the engine inlet through a duct from the tunnel make-up air system. In this system, air is throttled from approximately sea-level pressure to an engine-inlet stagnation pressure corresponding to the desired flight condition. Instrumentation. - Location of the instrumentation used to determine component performance is shown in figure 2. The temperatures measured at the exhaust-nozzle inlet (station 8) were used as the turbine-outlet temperatures because it was found that the temperatures measured at station 6 were affected by radiation because of the proximity of the turbine. The pressures at stations 1, 6, and 8 were measured with Alkazene manometers, whereas those at stations 3 and 4 were measured with mercury manometers. The temperatures at stations 1 and 3 were measured with iron-constantan thermocouples and those at stations 6 and 8 were measured with cromel-alumel thermocouples. The values of pressure and temperature used to determine component performance were arithmetic averages of the values measured at each station. #### PROCEDURE For unscheduled engine operation, a two-level control system was employed by which engine speed and exhaust-nozzle area were controlled separately. With this system and with the original combustors installed, data were obtained over a range of exhaust-nozzle areas at several fixed engine speeds, at altitudes of 15,000 and 45,000 feet, and a flight Mach number of 0.19. With the engine on the electronic control schedule and with the original combustors installed, data were obtained at simulated altitudes from 5000 to 55,000 feet with a flight Mach number of 0.19, and at 25,000 feet with simulated flight Mach numbers from 0.19 to 0.92. With the modified combustors installed, data were obtained at altitudes of 6000, 35,000, and 45,000 feet with a flight Mach number of 0.19. The compressor-inlet stagnation pressure was set to correspond to the desired flight condition assuming 100-percent diffuser recovery. The inlet-stagnation temperatures were set at NACA standard values for each flight condition, except that temperatures below 437° R could not be obtained. Fuel conforming to specification MIL-F-5624 (AN-F-58a) with a lower heating value of 18,900 Btu per pound was used throughout the investigation. Symbols used in this report are defined in appendix A and the method used in calculating gas flow is included in appendix B. Methods used in calculating flight Mach number, temperature, and turbine efficiency are presented in reference 4. Methods of calculating compressor and combustion efficiency are given in references 2 and 5, respectively. #### RESULTS AND DISCUSSION Component-performance data are presented in numerical form in tables I to III. ## Compressor Unscheduled operation. - Compressor performance maps for altitudes of 15,000 and 45,000 feet and a flight Mach number of 0.19 are presented in figure 3. Superimposed on these maps are lines of constant exhaust-nozzle area, representing the maximum and minimum areas scheduled by the electronic control, and one intermediate area. When the exhaust-nozzle area was changed from 2.94
to 2.22 square feet, compressor efficiency changed by less than 2 percent at all engine speeds and for either flight condition. Interpolation shows that at an altitude of 15,000 feet, this change in nozzle area caused an approximately 10-percent increase in pressure ratio at a corrected engine speed of 8000 rpm, and a 6-percent increase at 6000 rpm. At an altitude of 45,000 feet, compressor pressure ratio was increased about 14 percent at 8000 rpm and 9 percent at 6000 rpm. Scheduled operation. - The electronic control schedules the relation between exhaust-nozzle area and engine speed N as shown by the sea-level curve in figure 4(a). As altitude is increased at a constant flight speed, compressor-inlet temperature decreases and therefore at a given engine speed N corrected engine speed $N/\sqrt{\theta_1}$ increases with altitude; thus the exhaust nozzle-area varies with altitude for a given $N/\sqrt{\theta_1}$ (fig. 4(a)). A similar relation occurs when flight speed is varied at a given altitude. The experimental variation in exhaust-nozzle area with corrected engine speed for various altitudes from 5000 to 55,000 feet at a flight Mach number of 0.19 is shown in figure 4(b). Because of refrigeration limitations, inlet temperatures of about -20° F were used for the investigations at altitudes over 25,000 feet instead of the standard inlet temperatures for these flight conditions. Therefore the relation between corrected engine speed and nozzle area was different from that which would have occurred had standard temperatures been used. When figures 4(a) and 4(b) are compared, it is apparent that at a corrected engine speed of 7000 rpm the nozzle area was about 2.7 square feet for altitudes of 35,000 feet and over, and that the area would have been about 2.85 square feet with standard inlet temperatures. Interpolation in figure 3(b) shows that this change in area would change compressor pressure ratio only about $1\frac{1}{2}$ percent. The corresponding effect on air flow and compressor efficiency is negligible. Effect of altitude on compressor operating lines. - Operating lines obtained with the electronic control schedule for altitudes from 5000 to 55,000 feet and a flight Mach number of 0.19 are presented in figure 5(a). The position and the slope of the corrected engine speed lines on this plot were determined by interpolation from figures 5(b) and 3, respectively. The operating lines were coincident for altitudes from 5000 to 25,000 feet, and for altitudes over 25,000 feet engine air flow decreased at a given corrected engine speed. This reduction in air flow with altitude is attributed to the decrease in Reynolds number with altitude. It is also apparent in figure 5(a) that the constant speed lines cross corresponding compressor operating lines at the same value of compressor pressure ratio at all altitudes. Therefore, if pressure ratio were plotted against corrected engine speed, the data for all altitudes investigated would fall on a common curve. Investigation of an earlier model of the J47 turbojet engine (reference 2) showed a slight increase in compressor pressure ratio with altitude at given corrected engine speeds above 6000 rpm. This difference might be attributed partly to the increase in exhaust-nozzle area with altitude due to the control schedule. As previously discussed, if standard inlet temperatures had been used for the investigations at altitudes over 25,000 feet, the exhaust-nozzle area would have been slightly larger and the compressor pressure ratio would have been about $1\frac{1}{2}$ percent lower at corrected engine speeds of approximately 7000 rpm. However, this variation in pressure ratio was within the accuracy of the data. The compressor air flow at an altitude of 5000 feet and at a corrected engine speed of 7950 rpm was about 100 pounds per second. Effect of flight Mach number on compressor operation lines. - Compressor operating lines on the electronic control schedule at an altitude of 25,000 feet and flight Mach numbers from 0.19 to 0.92 are plotted in figure 6(a). The corrected engine speed lines were interpolated from figure 6(b). The constant corrected engine-speed lines are coincident for all flight Mach numbers investigated, indicating that the Reynolds number change was too small to affect air flow. At a given corrected engine speed, compressor pressure ratio decreased with increasing flight Mach number. This relation occurs because of the increase in compressor-inlet pressure with flight Mach number so that a given corrected engine speed can be maintained with a smaller pressure rise across the compressor. Compressor efficiency. - Curves showing the effect of corrected engine speed, altitude, and flight Mach number on compressor efficiency are presented in figure 7. For all flight conditions investigated, the peak compressor efficiency occurred in the region of corrected engine speeds between 6000 and 6500 rpm somewhat below the cruising speed range. Efficiency decreased sharply when the engine speed was reduced or increased from this range of speeds. A maximum compressor efficiency of 86 percent was obtained at an altitude of 5000 feet, a flight Mach number of 0.19, and a corrected engine speed of 6000 rpm. For the same flight condition at maximum engine speed, the compressor efficiency was 78 percent. When the altitude is increased from 5000 to 45,000 feet at any constant corrected engine speed above 5500 rpm, a decrease in compressor efficiency of approximately 5 percent resulted (fig. 7(a)). This change in compressor efficiency with altitude is attributed to the change in Reynolds number and is similar to the previously shown effect of altitude on the compressor air flow. The compressor efficiency curve for 15,000 feet altitude is below those for 25,000 and 35,000 feet over the upper range of engine speeds. However, unscheduled engine data for the same flight condition indicated that the curve should be about 2 percent higher over this range of speeds (fig. 3). It was therefore concluded that this discrepancy was caused by data error. On the compressor performance maps, the constant speed lines and the efficiency contours are nearly parallel at high corrected engine speeds, and approximately perpendicular to each other at low engine speeds (fig. 3). Consequently, changes in compressor pressure ratio have little effect on efficiency at high engine speeds and a large effect at low speeds. Compressor efficiency therefore decreased with increased flight Mach number (decreasing compressor pressure ratio) at corrected engine speeds below 6000 rpm (fig. 7(b)). At corrected engine speeds above 7000 rpm, the efficiency increased slightly with increasing Mach number, probably because of the corresponding increase in compressor Reynolds number. Effect of Reynolds number on compressor performance. - Shifts in the efficiency contours and corrected engine speed lines on compressor performance maps, with changes in flight conditions (fig. 3) have been attributed to changes in compressor Reynolds number. In order to show more clearly the effect of Reynolds number on compressor performance, cross plots (fig. 8), showing compressor corrected air flow and efficiency as functions of Reynolds number index, were made from the data in figures 5(b) and 7(a). For a given compressor Mach number (corrected engine speed), Reynolds number index varies linearly with Reynolds number and is defined as the ratio of Reynolds number at altitude to Reynolds number at standard sea-level conditions: $$\frac{\delta}{\phi \sqrt{\theta}} = \frac{\frac{P}{P_{s1}}}{\frac{\mu}{\mu_{s1}} \sqrt{\frac{T}{T_{s1}}}}$$ The effect of Reynolds number index on efficiency was nearly the same at all values of engine speed (fig. 8(a)). The critical value of Reynolds number index was approximately 0.4. Changing Reynolds number index from 0.88 to 0.4 resulted in a decrease in compressor efficiency of only approximately 2.5 percent, whereas changing the index from 0.4 to 0.11 resulted in a decrease in efficiency of approximately 5 percent. There was no appreciable effect of Reynolds number on the corrected air flow in the range of values above critical (0.4) (fig. 8(b)). At values of Reynolds number index below critical, air flow decreased with Reynolds number index. #### Combustors Combustion efficiency. - With the original combustors installed and with the engine operating on the electronic control schedule, combustion efficiency increased with increasing corrected engine speed (fig. 9). At a given corrected engine speed, combustion efficiency decreased with an increase in altitude (fig. 9(a)) and increased with flight Mach number (fig. 9(b)). The effect of changes in altitude or flight Mach number was greater at lower engine speeds. Combustion efficiencies for corrected engine speeds below 4000 rpm were of questionable accuracy and therefore omitted from these plots. Comparison of the data in figure 9 with similar data from previous investigations of the J47 turbojet engine (reference 5) shows that in the present investigation, combustion efficiency was more sensitive to changes in engine speed, altitude, and flight Mach number. This may be attributed to the increased air flow in the prototype J47D (RXI-1) turbojet engine resulting in higher combustor velocities than obtained with the earlier model of the turbojet engine at similar flight conditions. During nonscheduled operation, changing the exhaust-nozzle area from maximum to minimum had little effect on combustion efficiency. At an altitude of 15,000 feet and a flight Mach number of 0.19, changing the nozzle position from full open to full closed resulted in a 1-percent increase in combustion efficiency when the corrected engine speed was maintained at 8310 rpm (fig. 10). Comparison of the operating lines for the modified combustors (fig. 11) with those for the original combustors (fig. 9) shows that at engine speeds near rated the combustion efficiencies
of the modified combustors were 1 or 2 percent higher. Also, the efficiency of the modified combustors did not reduce as rapidly with decreasing engine speed. The effects of altitude, engine speed, and flight Mach number on combustion efficiency indicate that operating conditions that cause higher values of combustor-inlet pressure and temperature are conducive to higher values of combustion efficiency. This fact is apparent from correlation of combustion efficiency in terms of the combustor parameters P_3T_3/V_3 and fuel-air ratio f/a for both the original and modified combustors (fig. 12). The parameter P_3T_3/V_3 has been used to correlate the combustion efficiency of several combustors (reference 9). With this combustor, however, some spread with fuelair ratio was obtained. For values of P_3T_3/V_3 above 12,000, the combustion efficiency was nearly constant for each combustor regardless of the value of the fuel-air ratio. At values of P_3T_3/∇_3 below 12,000, combustion efficiency decreased with decreasing P3T3/V3 and there was also a trend towards decreasing efficiency with decreasing fuel-air ratio at a given value of P_3T_3/V_3 . For values of P_3T_3/V_3 above 12,000, the combustion efficiencies for the modified combustors are approximately 2 percent higher than the original combustors. For values of P_3T_3/V_3 below 12,000, the gain in efficiency obtained with the modified combustors increased with decreasing P_3T_3/V_3 . Combustor pressure drop. - From the momentum equation for gases passing through the combustors, the following equation may be derived (see appendix B): $$\frac{P_3 - P_4}{q_b} \approx \frac{T_4}{T_3} - 1 + C_{D_f}$$ (1) Data for various altitudes and flight Mach numbers are plotted to show $\frac{P_3-P_4}{q_b}$ as a function of T_4/T_3 for both the original and modified combustors (fig. 13). From equation (1), when T_4/T_3 equals 1.0, $\frac{P_3-P_4}{q_b}$ equals C_{D_f} . By extrapolating the data in figure 13 to T_4/T_3 equals 1.0, it is apparent that the friction-drag coefficients for the original and the modified burners are approximately 10.0 and 12.0, respectively. With these values of drag coefficient, P_3-P_4 the theoretical curves of $\frac{P_3 - P_4}{q_b} = T_4/T_3 - 1 + C_{D_f}$ were plotted in figure 13. Scatter of the data about these theoretical lines indicates fair agreement between the theoretical and the experimental values of combustor pressure drop (that is, the average slope of the data is approximately the same as the slope of the theoretical lines). Values of pressure drop based on the inlet total pressure $\frac{P_3 - P_4}{P_3}$ are presented in the tables. The improved combustion-efficiency characteristics and increased pressure loss obtained with the modified combustors are most likely due to improved fuel distribution and increased turbulence in the combustor caused by the addition of the baffles to the secondary air holes in the combustor liners. ### Turbine Engine on electronic control schedule. - Curves are presented in figure 14 that show the effect of altitude and corrected engine speed $$N/\sqrt{\theta_1}$$ on the parameters η_t , $\frac{T_4}{\theta_1}$, $\frac{N}{\sqrt{\theta_4}}$, $\frac{P_4}{P_6}$, and $\frac{W_{g,4}\sqrt{\theta_4}}{\delta_4 \gamma_4/1.4}$ when the engine is operating on the electronic control schedule. Data for corrected engine speed below 4000 rpm were omitted in these plots because of dubious accuracy. For corrected engine speeds over 4000 rpm, the values of turbine efficiency were between 79 and 86 percent (fig. 14(a)). The effects of altitude and engine speed on efficiency were small over this speed range, and scatter of the data precludes determination of any definite trends. Corrected turbine-inlet temperature was not affected appreciably by increases in altitude up to 25,000 feet but increased with altitude above 25,000 feet (fig. 14(b)). This phenomenon was due to the Reynolds number effects on the compressor, which reduced compressor efficiency at higher altitudes so that an increase in turbine power was required to attain a given engine speed. The reduction in corrected turbine speed with altitude above 25,000 feet follows from the effect of altitude on corrected turbine-inlet temperature (fig. 14(c)). At a given corrected engine speed, the turbine pressure ratio was not appreciably affected by an increase in altitude up to 35,000 feet (fig. 14(d)). At higher altitudes, turbine pressure ratio decreased slightly with altitude. Although critical pressure ratios exist across the turbine at corrected engine speeds over 5000 rpm, there is a slight increase in corrected turbine gas flow with corrected engine speed in this range indicating that there may be changes in the effective turbine nozzle area (fig. 14(e)). The trend is small, however, compared with the amount of data scatter. Altitude has no discernible effect on the corrected turbine gas flow. At a given corrected engine speed, neither variation of flight Mach number from 0.19 to 0.92 at an altitude of 25,000 feet nor variation of exhaust-nozzle area from maximum to minimum had any appreciable effect on turbine efficiency (tables I and II). ## SUMMARY OF RESULTS The following results were obtained from an investigation of the performance of the components of a prototype J47D (RX1-1) turbojet engine in the NACA Lewis altitude wind tunnel: - 1. For all flight conditions investigated, the peak compressor efficiency occurred in the range of corrected engine speeds between 6000 and 6500 rpm, which is below the specified engine cruising speed range. A maximum value of 86 percent was obtained at an altitude of 5000 feet, a flight Mach number of 0.19, and corrected engine speed of 6000 rpm. At the same flight condition, but at maximum speed, the efficiency was 78 percent. - 2. At corrected engine speeds above 5500 rpm and a flight Mach number of 0.19, changing altitude from 5000 to 45,000 feet caused approximately a 5-percent reduction in compressor efficiency. Corrected air flow at constant corrected engine speeds was not affected by an increase in altitude up to 25,000 feet, but decreased when altitude was further increased. The reductions in compressor efficiency and corrected air flow with increasing altitude are attributed to corresponding reductions in compressor Reynolds number. Critical Reynolds number index for the compressor was of the order of 0.4. - 3. At an altitude of 25,000 feet, changing flight Mach number from 0.19 to 0.92 had no effect on corrected air flow but resulted in a reduction in compressor efficiency at corrected engine speeds below 6000 rpm and a small increase in efficiency at corrected engine speeds above 7000 rpm. - 4. Combustion efficiency increased with increasing corrected engine speed. At a given corrected engine speed the combustion efficiency increased with flight Mach number and decreased with an increase in altitude. These effects are probably due to the corresponding increases in combustor-inlet pressure and temperature. - 5. At approximately rated engine speeds, the modified combustor gave combustion efficiencies 1 or 2 percent higher than the original combustors. Also, the efficiency of the modified combustor did not reduce as rapidly with decreasing engine speed. - 6. It was possible to correlate combustion efficiency, for each combustor type, in terms of the fuel-air ratio and the parameter $\frac{P_3 \ T_3}{V_3}$ where P_3 , T_3 , and V_3 are the stagnation pressure, stagnation temperature, and velocity, respectively, at the combustor inlet. Also, combustor pressure-drop parameter $\frac{P_3 P_4}{q_b}$ where P_3 is the stagnation pressure at the combustor inlet, P_4 is the stagnation pressure at the turbine, and q_b is the theoretical dynamic pressure at the combustor inlet, was correlated in terms of combustor temperature ratio. Friction drag coefficients of the original and modified combustors were 10.0 and 12.0, respectively. - 7. At corrected engine speeds over 4000 rpm, the turbine efficiency values were between 79 and 86 percent for altitudes from 5000 to 55,000 feet with a flight Mach number of 0.19. Variation of exhaust-nozzle area, or of flight Mach number from 0.19 to 0.92 had no appreciable effect on turbine efficiency. Lewis Flight Propulsion Laboratory National Advisory Committee for Aeronautics Cleveland, Ohio # APPENDIX A # Symbols The following symbols were used in this report: | THE | e lollowing symbols were used in this report: | |--|---| | A | cross-sectional area, sq ft | | $\mathtt{c}_{\mathtt{D}_{\mathbf{f}}}$. | combustor friction drag coefficient | | f/a | fuel-air ratio | | g | acceleration due to gravity, 32.2 ft/sec ² | | M | Mach number | | m. | mass flow, slugs/sec | | N | engine speed, rpm | | P | stagnation pressure, lb/sq ft abs. | | р | static pressure, 1b/sq ft abs. | | ₫ _Ď | theoretical dynamic pressure at combustor inlet; calculated using stagnation pressure, stagnation temperature, and air flow at station 3, combustor cross-sectional area (3.85 sq ft), and $\gamma = 1.4$. | | R | gas constant, 53.4 ft-lb/(lb)(OR) | | T | stagnation temperature, OR | | v | velocity, ft/sec | | $W_{\mathbf{a}}$ | air flow, lb/sec | | $w_{\mathbf{f}}$ | fuel flow, 1b/hr | | w_g | gas flow, lb/sec | | Υ | ratio of specific heats | | δ | pressure correction factor, stagnation pressure P/2116 | adiabatic efficiency η density, slugs/cu ft absolute viscosity, lb-sec/ft2 temperature correction factor, product of γ and stagnaθ tion temperature divided by product of γ and temperature at NACA standard sea-level conditions ø viscosity correction factor, air viscosity $\frac{\text{air viscosity}}{\text{air viscosity with NACA
stand-'}}, \frac{\mu}{\mu_0}$ ard sea-level temperature # Corrected parameters: $N/\sqrt{\theta_1}$ corrected engine speed, rpm $N/\sqrt{\theta_{\perp}}$ corrected turbine speed, rpm corrected turbine-inlet temperature, OR corrected compressor air flow, lb/sec corrected turbine gas flow, lb/sec # Subscripts: a. ъ burner С compressor gas g sea level sl turbine air NACA RM E51113 | 0 | ambient | |---|--------------------------------------| | ı | compressor inlet | | 3 | compressor discharge, combustor inle | | 4 | combustor discharge, turbine inlet | | 6 | turbine discharge | | 8 | exhaust-nozzle inlet | # APPENDIX B #### CALCULATIONS Air flow. - The air flow at station 1 was calculated from pressure and temperature measurements by use of the equation $$W_{a,l}' = gp_{l}A_{l}V_{l} = p_{l}A_{l}\sqrt{\frac{2 \gamma_{l} g}{(\gamma_{l}-1)Rt_{l}} \left[\left(\frac{p_{l}}{p_{l}}\right)^{\frac{\gamma_{l}-1}{\gamma}} - 1\right]}$$ (B1) where $\gamma_1 = 1.4$. Starter-cooling $W_{s,c}$, compressor-leakage $W_{c,l}$, and turbine-cooling $W_{t,c}$ air flows were calculated from pressure and temperature measurements assuming incompressible flow. The starter-cooling air is ram air inducted through a hole in the starter fairing and discharged into the engine inlet aft of station 1. Compressor-leakage air is dumped overboard, and turbine-cooling air is bled from the eighth stage of the compressor and returned to the main airstream at the turbine. The air and gas flows at various stations through the engine were calculated as follows: Compressor-inlet air flow, $$W_{a,l} = W_{a,l}^t + W_{s,c}$$ (B2) Compressor-discharge air flow, $$W_{a,3} = W_{a,1} - W_{c,1} - W_{t,c}$$ (B3) Combustor-discharge gas flow, $$W_{g,4} = W_{a,3} + W_{f}$$ (B4) Combustor pressure loss. - The expression for combustor pressure loss is derived as follows: # It is assumed: - (1) The fluid flow in the combustor is incompressible. - (2) In the following figure, $P_b = P_3$, $P_x = P_4$, $T_b = T_3$, $T_x = T_4$. - (3) The burning area between stations b and x is constant $(A_b = A_x)$. 2307 The momentum equation yields $$\begin{aligned} p_{b}A_{b} + m_{b}V_{b} &= p_{x}A_{b} + m_{x}V_{x} + c_{D_{f}} A_{b} q_{b} \\ p_{b}A_{b} + A_{b}\rho_{b}V_{b}^{2} &= p_{x}A_{b} + A_{b} \rho_{b}V_{x}^{2} + c_{D_{f}} A_{b} q_{b} \\ p_{b}A_{b} + 2A_{b} q_{b} &= p_{x}A_{b} + 2A_{b} q_{x} + c_{D_{f}} A_{b} q_{b} \end{aligned}$$ $$\begin{aligned} P_{b}A_{b} + q_{b} A_{b} &= P_{x} A_{b} + q_{x}A_{b} + c_{D_{f}} A_{b} q_{b} \end{aligned}$$ $$(B5)$$ Dividing by $\mathbf{q}_{\mathbf{b}}\mathbf{A}_{\mathbf{b}}$ and transposing yields $$\frac{P_{b} - P_{x}}{q_{b}} = \frac{q_{x}}{q_{b}} - 1 + C_{D_{f}}$$ (B6) Ιſ $$\frac{P_{x}}{P_{b}} \cong 1.0$$ then $$\frac{P_b - P_x}{q_b} \cong \frac{T_x}{T_b} - 1 + C_{D_f}$$ or $$\frac{P_3 - P_4}{q_b} \cong \frac{T_4}{T_3} - 1 + C_{D_f}$$ (B7) Combustor-reference dynamic pressure. - In order to calculate a combustor-reference dynamic pressure, based on the total combustor cross-sectional area (3.85 sq ft), a combustor-reference Mach number was first calculated with the equation $$\frac{M_{b}}{\left(1 + \frac{\gamma_{3}-1}{2} M_{b}^{2}\right)^{\frac{\gamma_{3}+1}{2(\gamma_{3}-1)}}} = \frac{W_{a,3}\sqrt{T_{3}}}{0.776 A_{b} P_{3} \gamma_{3}}$$ (B8) Then $$q_b = \frac{\gamma_3}{2} p_b M_b^2$$ and $$p_{b} = \frac{P_{3}}{\left(1 + \frac{\gamma_{3} - 1}{2} M_{b}^{2}\right)^{\frac{\gamma_{3}}{\gamma_{3} - 1}}}$$ therefore $$q_b = \frac{r_3}{2} P_3 = \frac{M_b^2}{\left(1 + \frac{r_3 - 1}{2} M_b^2\right)^{r_3}}$$ (B9) where $\gamma_3 = 1.40$ ### REFERENCES - 1. Conrad, E. William, and Sobolewski, Adam E.: Altitude-Wind-Tunnel Investigation of J47 Turbojet-Engine Performance. NACA RM E9G09, 1949. - Prince, William R., and Jansen, Emmert T.: Altitude-Wind-Tunnel Investigation of Compressor Performance on J47 Turbojet Engine. NACA RM E9G28, 1949. - 3. Bloomer, Harry E.: Altitude-Wind-Tunnel Investigation of Operational Characteristics of J47 Turbojet Engine. NACA RM E9I26, 1950. - 4. Thorman, H. Carl, and McAulay, John E.: Altitude-Wind-Tunnel Investigation of Turbine Performance in J47 Turbojet Engine. NACA RM E9K10, 1950. - 5. Campbell, Carl E.: Altitude-Wind-Tunnel Investigation of Combustion-Chamber Performance on J47 Turbojet Engine. NACA RM E9LO2, 1950. - 6. Saari, M. J., and Wintler, J. T.: Altitude-Wind-Tunnel Investigation of Performance Characteristics of J47D (RX1-1) Turbojet Engine with Fixed-Area Exhaust Nozzle. NACA RM E51B06, 1951. - 7. Conrad, E. William, and McAulay, John E.: Altitude-Wind-Tunnel Investigation of Performance Characteristics of J47D (RXL-1) Turbojet Engine with Variable-Area Exhaust Nozzle. NACA RM E51C15, 1951. - 8. Conrad, E. William, Bloomer, Harry E., and Sobolewski, Adam E.: Altitude Operational Characteristics of a Prototype Model of the J47D (RX1-1 and RX1-3) Turbojet Engine with Integrated Electronic Control. NACA RM E51E08. 1952 - 9. Childs, J. Howard: Preliminary Correlation of Efficiency of Aircraft Gas-Turbine Combustors for Different Operating Conditions. NACA RM E50F15, 1950. TABLE I - COMPONENT PERFORMANCE OF PROTOTYPE J47D (RX1-1) TURBOJET | Run | Altitude
(ft) | Tunnel static
pressure, po
(lb/sq ft abs.) | Ram pressure
ratio
P1/P0 | Flight Mach
number
M | Engine speed
N
(rpm) | Fuel flow
W
(lb/hr) | Exhaust-nozsle
outlet area
(sq ft) | Compressor-inlet
stagnation
temperature, T ₁
(OR) | Compressor-inlet
stagnation
pressure, P ₁
(1b/eq ft abs.) | Compressor-discharge
stagnation pressure
Ps
(1b/sq ft abs.) | 0 11 | Turbine-inlet stagma-
tion temperature
Te
(OR) | <pre>Turbine-inlet stagna- tion pressure P4 (lb/sq ft abs.)</pre> | Turbine-discharge
stagnation pressure
P ₆
(1b/sq ft abs.) | Nozzle-inlet stagna-
tion temperature
TB
(OR) | Coupre | |--|------------------|--|--|---|--|--|--|---|--|--|--|--|--|--|---|--| | 1
2
3
4
5
6
7
8
9
10
11
12 | 5000 | 1757
1754
1754
1756
1756
1766
1772
1759 | 1.021
1.021
1.022
1.023
1.023
1.025
1.025
1.025
1.025
1.025 | 0.175
.175
.175
.176
.175
.180
.180
.195
.188
.216
.199 | 7955
7955
7955
7955
7955
7955
7692
7386
6993
5944
5114
4091
3147
2046 | 5315
4770
4485
4235
5790
5340
2860
1675
1227
1020
823
515 | 2.3195667
2.355667
2.3556914444
2.394 | 504
505
504
504
507
504
506
504
504
504 | 1784
1801
1798
1798
1791
1794
1790
1804
1811
1830
1809 | 9450
9289
9206
9080
8613
8261
7594
5683
4363
2401
1990 | 897
892
886
882
859
853
809
752
610
584
525 | 2050
1940
1870
1825
1729
1615
1520
1250
1155
1165
1190
1125 | 9096
8915
8773
8642
8242
7855
7204
5348
4120
2942
2318
1959 | 3604
3415
3270
3176
3041
2892
2708
2221
2037
1931
1851
1808 | 1711
1600
1533
1486
1408
1320
1038
995
1067
1129
1100 | 5.295
5.155
5.12
5.06
4.80
4.24
5.14
2.41
1.53
1.10 | | 15
16
17
18
19
20
21
22
23
24 | 25,000 | 1189
1191
1190
782 | 1.025
1.025
1.025
1.026
1.024
1.027
1.027
1.028
1.029
1.029 | 0.180
.180
.192
.184
.195
.195
.199
.203
0.184 | 7955
7955
7955
7692
6995
5944
5114
4091
5147
2448
7955
7965 | 3950
3500
3100
2690
1975
1185
870
758
835
518
2730
2675 | 2.28
2.59
2.55
2.65
2.91
2.91
2.91
2.91
2.28
2.31 | 472
475
475
472
472
472
472
472
472
475
472
476
476 | 1220
1215
1218
1219
1217
1226
1222
1222
1225
1224
801
799 | 6872
6611
6412
6084
5517
4086
5112
2181
1682
1461
4605
4586 | 871
870
866
859
782
707
651
585
537
509
878 | 2068
1965
1855
1713
1470
1205
1112
1108
1130
1112
2102
2102 | 6557
6510
5116
5807
5064
3844
2940
2061
1602
1430
4587
4565 | 2584
2395
2233
2121
1895
1554
1401
1311
1247
1234
1726 | 1728
1623
1509
1386
1191
985
948
1002
1067
1081 |
5.63
5.44
5.28
4.995
4.37
2.55
1.77
1.36
1.19
5.75 | | 25
27
28
20
20
20
20
20
20
20
20
20
20
20
20
20 | | 781
783
782
784
782
781
781
783 | 1.025
1.025
1.025
1.022
1.024
1.024
1.027
1.028 | .180
.180
.176
.184
.184
.195
.199
.212
.515 | 7955
7955
7955
7955
7992
6993
5944
5114
4091
2046
7955
7955 | 2380
2270
2150
1875
1385
850
645
570
3006
3065
3065
2590 | 2.40
2.45
2.55
2.56
2.89
2.94
2.94
2.94
2.23
2.23
2.42 | 465
464
463
465
466
466
466
466 | 799
801
800
801
800
802
805
805
927
925 | 4401
4327
4285
4073
3572
2727
2070
1425
913
5501
5287
5042 | 864
874
853
8532
774
695
659
577
496
874
865 | 1970
1916
1860
1720
1481
1203
1102
1100
1201
2077 | 4199
4158
4080
5888
3405
2580
1957
1361
897
5087 | 1606
1556
1438
1425
1280
1038
941
867
816
1959
1948 | 1819
1552
1515
1390
1198
980
937
993
1073
1722
1698 | 5.74
5.51
5.35
5.35
4.46
3.42
1.72
15.72 | | 37
38
39
40
41
42
43
44
45
46 | | 782 | 1.198
1.198
1.190
1.193
1.192
1.201
1.202
1.204
1.195
1.397
1.397
1.391 | .505
.509
.507
.519
.520
.522
.511
.708
.708
.704
.706 | 7955
7692
6993
5944
5114
4091
7955
7955
7955
7692
6993 | 2530
2010
1445
759
512
421
3405
2885
2545
2170
1520 | 22.55
89
2.62
93
2.22
2.22
2.25
2.55
2.60 | 466
466
463
463
483
463
467
471
472
473
474 | 923
924
932
933
938
938
933
1084
1081
1088
1089 | 4859
4624
4093
3064
2304
1576
5056
5766
5611
5306
4630 | 856
850
824
768
687
632
566
863
861
855
828
775 | 1902
1790
1659
1408
1089
954
889
2020
1869
1750
1609 | 4804
4635
4404
3896
2884
2159
1486
5793
5497
5290
5054
4402 | 1785
1651
1560
1396
1095
965
870
2225
2018
1864
1747
1549 | 1315
1127
870
788
788
1677
1523
1405 | 5.45
5.28
5.00
4.39
5.26
5.56
5.56
5.15
5.15
6.87 | | 49
49
51
51
55
55
55
55
55
55
55
55
55
55
55 | | 779
786
782
779
786
779
788 | 1.401
1.591
1.599
1.403
1.732
1.730
1.720
1.734
1.736
1.731
1.730 | .704
.710
.713
.922
.921
.916
.923
.924
.922
.921 | 5944
5114
4091
7955
7955
7955
7955
7955
7955
7955
7692
6993
5944 | . 677
. 376
. 241
. 3840
. 5705
. 3150
. 2955
. 2775
. 2485
. 1564
. 573 | 2.91
2.93
2.93
2.14
2.26
2.57
2.45
2.53
2.53
2.63 | 475
475
466
509
512
504
511
504
508
505 | 1088
1093
1093
1361
1353
1364
1363
1352
1364
1351
1351 | 5547
2435
1701
7108
6977
6705
6654
6592
6250
5326
3742 | 693
632
562
904
905
888
891
878
860
800
720 | 1022
854
734
2010
1993
1825
1758
1710
1611
1332
968 | 3137
2268
1596
6766
6869
6398
6246
5938
5036
3479
2860 | 1157
966
887
2661
2596
2243
2259
2165
2045
1707
1209
1024 | 1668
1645
1482
1428
1372
1290
1056
781 | 4.24
3.07
2.25
1.57
5.15
5.00
4.88
4.87
4.59
4.59
4.59 | | 61
62
63
64
65 | 35,000
45,000 | 498
498
494
494
308
510
505
510 | 1.727
1.734
1.020
1.020
1.020
1.022
1.028
1.034
1.025
1.025
1.026 | .925
.169
.169
.176
.199
.219
.219
.255
.180
.192
.212 | 5280
7935
7935
6993
5944
5114
4091
7935
7955
7955
7956
7692 | 277
1720
1695
968
615
490
480
1150
1088
1056
1020
890 | 2.91
2.38
2.63
2.89
2.93
2.93
2.475
2.56
2.56
2.58 | 510
501
458
454
451
452
451
451
448
447
445
445 | 508
508
508
509
508
511
320
517
311
320 | 2875
2906
2891
2337
1781
1302
968
1834
1808
1771
1800
1645 | 859
866
863
761
684
625
559
867
860
855
857
829 | 793
2070
2049
1490
1208
1100
1109
2059
2036
2010
2005
1871 | 2660
2768
2751
2231
1688
1235
926
1746
1729
1687
1718 | 1059
1052
825
687
594
548
657
645
626
628 | 1715
1699
1209
985
930
1009
1702
1681
1659
1648 | 2.13
5.74
6.74
4.60
2.56
1.89
5.73
5.70
5.35
5.53 | | 71
72
73
74
75
76 | 55,000 | 510
501
508
511
510
510
190
191
190
190 | 1.026
1.027
1.033
1.026
1.032
1.029
1.032
1.032
1.032
1.032 | .192
.190
.216
.192
.212
.200
.212
.192
.212
.228
.212 | 7386
7386
6993
5944
5114
5114
7955
7955
7955
7692
6993 | 768
780
689
475
392
392
859
647
645
645 | 2.58
2.61
2.62
2.855
2.94
2.55
2.55
2.705
2.58
2.58 | 446
447
451
447
451
450
449
453
456
455
454
454 | 511
518
509
516
519
520
519
196
196
196
197
195 | 1545
1544
1471
1127
829
834
1076
1091
1087
1048
898 | 829
800
769
693
631
630
872
867
876
953
799 | 1728
1736
1585
1280
1160
1160
2041
2051
2058
1999
1780 | 1575
1514
1475
1406
1071
789
754
1039
1048
1039
1001
861 | 583
577
556
541
440
380
387
380
378
381
370
341 | 1415
1422
1294
1080
991
989
1682
1695
1677
1657 | 5.29
5.01
5.00
4.65
5.53
2.59
2.61
5.49
5.55
5.55
6.33
4.80 | ENGINE ON ELECTRONIC CONTROL SCHEDULE - ORIGINAL COMBUSTORS INSTALLED | | | | | | | | | | | | | | | | _ | |---|--|---|--|--|---|---|---|---|--|--|--|--|--|---|---| | Air flow Wa,1 (1b/80c) | Corrected engine
speed, N-V ^B 1
(rpm) | Corrected air flow Ma,1-\(\theta_1\) (1b\(\theta_0\)) (1b\(\theta_0\)) | Compressor effloiency η_0 (percent) | Burner combustion parameter Parameter | Combustion efficiency \$\eta_D\$ (percent) | Burner pressure-loss coefficient $\frac{P_3-P_4}{q_b}$ | Fuel-air ratio
f/a | Combustion-chamber
stagnation-temperature
ratio, IL/I3 | Burner pressure loss $\frac{P_3 - P_4}{P_3}$ | Pario pressure | Turbine efficiency $\eta_{\rm t}$ (percent) | Corrected turbina-
inlet temperature
T ₄ /0 ₁
(O _R) | Corrected turbine speed, N/-/94 | Corrected turbine gas flow H.4.7\floor 0.47\floor (1b/sec) | Run | | 85.69
86.86
86.19
85.04
85.46
79.37
64.78
50.64
17.87
61.09
60.51
61.02 | 8074
8066
8082
8074
7807
7475
7098
8027
5191
4152
3194
2083
8345
8329
8329 | 99.87
100.86
100.62
100.18
99.17
97.25
92.48
74.94
58.30
41.05
50.44
20.54
100.98
100.68 | 78.5
78.1
78.2
78.5
85.2
84.6
85.3
70.8
57.8
77.7
73.2 | 30,371
27,829
24,465
25,451
20,715
18,770
12,810
9,812
7,008
6,119
6,815
19,886
18,482
17,991 | 96.1
98.0
97.0
97.1
98.6
97.4
95.1
92.7
94.6
98.0 | 9.62
9.88
11.19
11.48
9.58
10.91
10.94
10.90
11.57
10.58
9.35
5.78 | 0.0177
.0158
.0147
.0140
.0127
.0102
.0073
.0089
.0080
.0081
0.0185 |
2.285
2.175
2.169
2.015
1.959
1.708
1.706
1.706
1.710
2.110
2.143 | 0.038
.041
.047
.048
.045
.051
.058
.056
.047
.035
.016 | 2.524
2.610
2.683
2.721
2.710
2.718
2.660
2.408
2.025
1.2524
1.252
1.084
2.557
2.535
2.739 | 82.7
83.8
83.3
84.3
81.1
82.8
81.9
78.8
88.3
104.2
81.4
82.8 | 2111
1994
1930
1880
1781
1566
1285
1190
1200
1226
1165
2275
2156
2035 | 4135
4240
4314
4354
4288
4177
3890
3474
2768
2109
1407
4120
4218
4333 | 40.56
40.68
40.54
40.29
40.14
40.25
39.83
38.83
38.98
36.74
28.54
40.35
40.35 | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | | 56.85
47.34
37.15
25.69
18.34
13.67
40.40
40.48
40.48 | 8054
7336
6217
5365
4291
5289
2568
8448
8440
8424
8400
8416
8146 | 100.18 94.24 78.12 61.54 42.42 30.31 22.53 101.75 101.20 101.12 101.28 101.15 99.52 | 75.6
79.9
85.2
80.8
73.9
63.5
71.4
71.8
72.6
70.5
74.5 | 15,726
12,921
8,928
6,724
4,875
3,904
4,272
11,857
11,850
11,590
11,534
10,491 | 97.5
95.7
94.8
92.8
83.4
79.5
74.8
95.5
96.6
95.0
96.1 | 10.34
9.92
10.50
11.06
10.29
10.51
6.04
12.78
13.39
11.77
9.54
11.95
10.56 | .0145
.0127
.0099
.0071
.0086
.0085
.0185
.0168
.0168
.0160
.0151 | 2.142
2.044
1.880
1.704
1.708
1.894
2.185
2.594
2.397
2.280
2.181
2.067 | .046
.048
.055
.055
.046
.036
.015
0.047
.048
.048
.048 | 2.738
2.672
2.474
2.099
1.572
1.159
2.542
2.529
2.615
2.615
2.622
2.724
2.728 | 85.2
84.4
84.5
85.2
86.1
72.1
84.6
85.9
85.9
85.7
88.7 | 1879
1617
1519
1223
1219
1235
22571
2267
2208
2136
2081
1928 | 4348
4243
5957
3537
2833
2161
1694
4088
4088
4213
4288
4326
4338 | 40.65
40.37
39.79
39.14
38.64
35.8
29.76
40.70
40.54
40.60
40.43
40.43 | 16
17
18
19
20
21
22
23
24
25
26
27
28
29 | | 58.50
51.81
24.98
15.88
8.20
47.28
46.64
46.59
48.16
43.74
57.10 | 7406
5277
5411
4320
2159
8400
8393
8393
8593
8138
7406
6296
5416
4332 | 95.55
79.68
52.28
39.53
20.43
102.22
101.15
100.61
100.54
99.91
93.78
79.45
63.10
45.55 | 79.4
84.9
82.6
73.5
75.5
74.9
75.4
80.5
83.7
80.5 | 8,654
5,864
4,484
3,147
2,736
13,993
14,237
15,562
12,676
11,848
9,707
6,652
4,565
3,024 | 94.9
89.8
84.1
76.7
98.0
92.9
95.4
92.7
93.8
91.8
85.0
74.5 | 9.75
10.57
10.92
11.51
8.33
11.92
12.39
12.10
11.75
10.82
10.23
10.23
10.20 | .0105
.0078
.0075
.0101
.0104
.0185
.0187
.0159
.0145
.0124
.0058 | 1.913
1.731
1.725
1.908
2.220
2.376
2.360
2.360
2.360
1.989
1.585
1.509
1.571 | .047
.054
.055
.045
.046
.046
.047
.048
.048
.059
.057 | 2.660
2.486
2.080
1.570
1.099
2.587
2.583
2.691
2.807
2.823
2.791
2.639
2.237
1.708 | 85.3.4.0.1.6.8.5.7.2.2.7.4.9.5.1.83.8.6.5.5.4.6.8.5.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8.8 | 1860
1543
1255
1228
1227
2518
2274
2119
1994
1854
1578
1221
1069
997 | 4228
3963
3551
2845
1423
4111
4145
4284
4405
4436
4330
4151
3799
3147 | 40.84
39.36
36.19
36.18
40.48
39.86
39.85
39.94
39.94
39.40
39.20
39.58 | 29
30
51
52
35
35
35
35
37
38
40
41
42 | | 21.27
83.80
53.19
53.48
53.03
49.80
41.62
52.96
24.34
65.31
64.75
64.66
64.66 | 8385
8385
8345
8054
7315
8211
5344
4316
8036
8011
8074
8019
8074 | 102.25
101.60
101.51
100.62
94.29
78.81
61.99
45.25
100.55
100.55
100.53
100.59 | 75.0
74.2
75.8
76.5
82.6
77.9
65.4
77.0
76.8
77.2
78.7 | 17,716
15,327
14,441
13,444
10,915
6,945
4,627
2,986
19,638
19,638
19,579
18,569 | 96.4
96.5
97.2
96.7
96.5
91.7
78.4
96.5
97.0
95.5 | 11.42
11.39
15.30
10.35
9.84
10.45
10.45
10.78
10.78
10.41
10.56
11.41 | .0176
.0151
.0132
.0114
.0085
.0045
.0052
.0027
.0168
.0159
.0139 | 2.541
2.171
2.047
1.945
1.765
1.355
1.306
2.223
2.202
2.055
1.928 | .045
.047
.048
.049
.065
.069
.064
.048
.044
.046 | 2.604
2.724
2.838
2.893
2.842
2.759
2.549
2.543
2.569
2.751
2.888 | 82.4
84.4
85.7
84.4
85.6
85.6
85.9
85.9
85.9
85.9
85.9
85.9
85.9
85.9 | 2244
2060
1925
1765
1498
1117
933
818
2050
2021
1680
1786
1761 | 4165
4316
4456
4475
4276
4008
3449
4174
4189
4364
4442
4499 | 40.75
40.59
40.40
40.48
59.91
39.76
38.64
41.10
41.14
40.82
40.82 | 45
44
45
46
47
48
49
50
51
52
53 | | 66.46
64.47
59.86
48.81
40.35
25.61
24.45
20.51
15.81
11.04
16.19
16.19 | 7777
7091
5997
5375
8488
8504
7503
6366
5487
4390
8560
8568
8591 | 98.91
92.45
78.61
62.07
100.7
100.6
94.91
78.85
61.37
42.61
99.50
100.16
98.91 | 82.2
82.0
71.9
71.9
79.6
85.9
80.1
85.7
89.2
69.9
70.0 | 16,126
15,712
12,290
7,589
5,359
7,528
7,190
5,675
3,945
2,769
2,769
4,682
4,687 | 96.2
98.6
100.0
91.7
93.1
92.7
89.6
81.6
72.3
59.9
88.5
90.4 | 10.18
10.09
10.65
10.59
13.19
13.44
10.09
10.88
10.50
11.13
13.35
12.14
15.17 | .0110
.0074
.0035
.0019
.0169
.0112
.0086
.0088
.0125
0.0199 | 1.873
1.665
1.344
1.203
2.374
1.958
1.766
1.760
1.984
2.375
2.367
2.351 | .050
.055
.070
.074
0.048
.048
.045
.052
.052
.043
0.048
.044 | 2.904
2.950
2.878
2.598
2.614
2.615
2.704
2.531
2.079
1.690
2.658
2.681
2.685 | 84.1
85.9
84.4
85.7
85.7
85.7
85.7
85.7
85.7
85.7
85.7 | 1846
1369
985
622
2356
2342
1715
1287
1279
1276
2384
2364
2344 | 4472
4440
4383
4286
4117
4139
4218
5955
3558
2835
4130
4174 | 40.95
40.39
40.24
59.25
40.55
40.04
39.76
39.61
37.23
40.06
40.06
39.69 | 56
57
58
60
61
62
63
64
65
66
67
68 | | 16.25
15.70
15.56
14.96
14.99
12.13
9.77
10.23
9.57
9.57
9.57
9.57
9.29
8.60 | 8591
8300
7955
7925
7531
6378
5492
5498
8520
8488
8520
8223
7476 | 99.50
99.01
96.13
95.48
95.20
74.98
60.16
63.12
96.50
96.50
96.28
96.50
97.29 | 69.0
71.1
74.1
76.7
81.0
77.8
78.5
67.9
70.3
67.7
69.8
72.1 | 4,579
4,354
4,271
4,026
3,805
2,542
1,784
1,863
3,658
3,256
3,049
2,948
2,528 | 93.7
94.5
89.7
87.9
71.9
63.2
86.1
88.3
90.3 | 12.52
10.95
12.10
11.18
10.28
10.28
9.41
9.50
11.26
12.28
12.80
10.56 | .0179
.0161
.0140
.0148
.0130
.0111
.0113
.0108
.0195
.0194
.0190
.0198
.0180 | 2.340
2.257
2.160
2.157
2.061
1.847
1.858
1.841
2.356
2.326
2.326
2.328 | .046
.044
.050
.045
.044
.050
.048
.048
.034
.039
.044
.045 | 2.738
2.698
2.624
2.653
2.599
2.434
2.076
2.052
2.734
2.727
2.727
2.727
2.725
2.525 | 82.30
84.4
84.8
81.9
81.7
85.9
81.8
82.4
80.0
85.5 | 2538
2178
2006
1998
1840
1473
1357
1341
2339
2334
2356
2285
2035 | 4180
4174
4156
4149
4099
3850
3469
4148
4135
4150
4048
3887 | 40.26
41.02
40.41
40.03
57.91
59.53
41.15
59.66
59.11
39.58
39.52
40.02 | 69
70
71
72
73
74
75
76
77
78
80
81 | TABLE II - COMPONENT PERFORMANCE OF PROTOTYPE J47D (RX1-1) TURBOJET ENGINE; | Ema 1 | 00 (ft) | pressure, Po | Ram pressure
o ratio
O Pl/Po | Flight Mach
number
89 M | Engine speed ** ** ** ** ** ** ** ** ** ** ** ** * | Puel flow W _f | N Exhaust-nozzle Outlet area (sq ft) | Compressor-inlet stagnation temperature, T | Compressor-inlet stagnation pressure, P ₁ (1b/sq ft abs.) | Compressor-discharge stagnation pressure P ₃ (1b/sq ft abs.) | Compressor—discharge compresso | Turbine-inlet stagna-
tion temperature
T _{\$\psi\$}
(OR) | Turbine-inlet stagna-
tion pressure
P4
(1b/sq ft abs.) | Turbine-discharge
stagnation pressure
P6
(1b/sq ft abs.) | Nezle-inlet stagna-
tion temperature, Ig
(og)
Compressor pressure
ratio, Py/P ₁ | |--|---------|--
---|--|--|---|---|---|---
---|--|--|---|--|--| | 23456789011234567890123345678901233456 | | 1186
1191
1188
1190
1187
1188
1190
1187
1188
1188
1188
1188
1190
1193
1193
1193
1193
1193
1193
1193 | 1.024
1.025
1.025
1.025
1.025
1.024
1.024
1.024
1.024
1.024
1.026
1.026
1.026
1.026
1.026
1.026
1.026
1.026
1.027
1.028
1.027
1.028
1.027
1.027
1.027
1.027
1.027
1.027
1.027
1.028
1.027
1.029
1.029
1.029 | 184
180
188
178
184
184
184
184
184
184
184
184
188
192
192
193
193
193
195
195
195
195
195
195
195
195
195
195 | 7955579555779555779555779555779555779555779566738667386664377386664377386664377386566437738656643773865644347511447911447911479114791147991 | 3605
3605
3605
3605
3605
3605
3605
3606
3606 |
2.369
2.350
2.350
2.350
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250
2.250 | 478 474 475 477 477 477 477 477 477 477 477 | 1215 1218 1217 1220 1218 1216 1216 1218 1217 1215 1217 1217 1217 1217 1218 1221 1225 1229 1221 1222 1222 1222 1222 | 6644
6671
6489
6375
6239
6131
6279
6128
6077
5864
55180
5278
55180
5278
4975
4400
4268
4409
4268
4409
4268
4109
3219
3219
3170
2243
2250
2183 | 874
869
869
862
857
855
826
821
817
809
805
775
780
775
775
775
775
774
770
770
859
859
850
850
850
850
850
850
850
850
850
850 | 2078
2022
1992
1909
1819
1749
1675
1940
1828
1770
1857
1558
1715
1451
1471
1378
1413
1524
1453
1524
1453
1524
1150
1120
1120
1120
1120
1120
1120
1120 | 6446
63538
63538
6357
6186
6976
5926
5926
5926
5926
5926
5926
5926
592 | 2551
2458
2455
2294
2180
2070
1921
2561
22561
22561
2256
1784
2221
2089
1985
1782
1889
1782
1651
1767
1641
1570
1518
1641
1577
1531
1482
1483
1483
1540
1540
1540
1540
1540
1540
1540 | 1752 6.57
1676 6.47
1650 5.48
1663 5.55
1478 5.22
1408 5.24
1338 5.04
1627 6.16
1521 5.03
1470 4.82
1248 4.68
1156 4.53
1447 4.43
1258 4.26
1208 4.17
1121 4.08
1048 3.59
1157 3.49
1095 3.53
1047 2.66
1015 2.69
1057 3.45
1057 3.49
1057 3.45
1057 3 | | 357
58
59
412
445
445
445
445
55
55
55
56
66
66
66
66
66
66
77
77
77 | 45,000 | 1187
1187
1189
1187
515
505
505
505
505
510
510
510
510
510 | 1.032
1.022
1.022
1.022
1.022
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.023
1.024
1.024
1.024
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025
1.025 | 212
210
203
0 176
1176
1172
205
205
205
205
205
205
205
205
205
20 |
4091
4091
7955
7955
7955
7955
7388
7388
7388
7388
7388
6993
6993
6993
6994
6294
6294
6294
5944
5944
5944
5944
5944
5944
5944
5944
5944
5944
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945
5945 | 7958
7589
11390
9356
8129
1950
825
825
8775
8772
10420
7754
6800
7756
602
4632
5585
5585
5171
4357 | 2.885
2.919
2.95
2.95
2.95
2.95
2.95
2.95
2.95
2.9 | 472
472
473
443
443
443
443
443
443
458
458
458
458
458
440
441
443
443
443
445
446
441
448
441
448
441
441
442
442
442
442 | 1228
1219
1224
524
529
511
512
513
513
513
513
514
515
516
517
516
517
516
517
518
517
518
519
519
519
519
519
519
519
519 | 2166
2142
2135
1847
1775
1775
1658
1620
1757
1693
1597
1635
1578
1585
1578
1637
1461
1414
1592
1400
1225
1100
1225
1103
1044
1011
103
1044
1011
103
1044
1011
103
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1011
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044
1044 | 580
582
579
859
850
831
823
823
823
824
800
791
787
787
787
787
789
781
769
769
731
769
770
700
700
708
691
682
662
665
665
665
665
665
664
665 | 1112 1102 1008 2062 1975 1885 1825 1825 1825 1825 1825 1826 1770 1986 1998 17740 1882 1687 2010 1921 1681 1681 1681 1681 1681 1681 1681 16 | 2067
2041
2036
1778
1778
1708
1645
1590
1567
1674
1618
1577
1531
1569
1446
1627
1446
1627
1446
1627
1348
1352
1426
1138
1138
1148
1138
1146
1146
1146
1107
1046
1047
1047
1047
1047
1047
1047
1047
988
920
900 | 1325
1303
1297
794
726
680
623
684
677
639
618
574
552
551
504
707
664
555
488
555
488
585
448
539
429
425
547
565
565
565
565
565
565
565
565
565
56 | 1017 1.77 999 1.76 9988 1.75 1715 15.70 1627 5.54 1639 5.38 1436 5.18 1683 5.49 1587 5.52 1524 5.07 1423 5.00 1423 5.12 1524 5.07 1423 5.00 1423 5.12 1524 5.07 1424 5.07 1425 5.12 1256 4.72 1286 4.67 1168 4.49 1444 4.45 1419 1444 4.45 1419 1444 4.45 1410 1103 3.96 1008 9 5.92 1245 5.81 1078 3.57 1044 3.28 1100 3.50 1200 3.50 1200 3.50 1200 3.28 1180 3.18 1110 3.06 1047 2.98 | 230 EXHAUST-MOZZLE AREA AND ENGINE SPEED CONTROLLED SEPARATELY - ORIGINAL COMBUSTORS INSTALLED | | Τ_ | Γ | > | | Γ. | _ | | | т | | | | | | T T | |-------------------------|-----------------------|--------------------------|-------------------------|--|-----------------------------|--|----------------|---|-------------------------|-------------------------|------------------------------|--|--------------------
--|--| | } | 1 | 2 | officiency
ent) |]_ | efficiency
ent) | 80 | } | Combustion-chamber
stagnation-temperature
ratio TA/TS | 1088 | } | 20 | <u>.</u> | | } | } } | | 1 | ongine | ដ | 다
다 | combustion
ameter
3T ₃ | | 2 E | 1 | 4 2 E | | 2 | Lenoy | turbine
erature | urbine | ļŝ | 11 | | | 4 B | 16 3 | E _ E | ter | tion eff.
Th
(percent | r pressure
coefficien
P ₃ -P ₄ | retio | 율활탈 | pressure
P3-P4
P5 | pressure
to
Pe | ne effici
ne
(percent) | 15 T | \$ S_ | ig
B≽l⊣i• ~ | J | | | 1 \ | | nor ef
no
(percen | PST3 | E E | 12 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - | | ation-
ation- | in in | ine pro | 2 t 5 | £ 86€. | P N | February Frank Fra | à | | flow
3,1 | Corrected
speed, N | Ma,1,
Wa,1,
(1b/s) | Compressor
N
(per | | | | ĮŽ. | rati | | Turbine
ra | اق ق | Corrected
inlet temp
T ₄ /8 | Correcte
speed, | Parrected Ran f. Wg, 4.7 | \$ | | a € | E E | 1 | 텵 | Burner | andmo! | Jrner
C | ne) | 4 8 | Burner | i i | entdruf
(p | 10.0 | a da | 2
0 0 ≥ 10 ~ | 7 (| | <u> </u> | ļ.— | <u> </u> | | | | <u> </u> | PA | | <u> </u> | | | | 8 | <u> </u> | 乭 | | 59.66
80.64 | 8281
8305 | 100.12 | 75.9
74.8
74.8 | 19,575
18,618 | 95.2
98.4 | 12.17
11.82 | 0.0186 | 2.364
2.314 | .044 | 2.547
2.568 | 82.8
83.6 | 2253
2204 | 4111
4183 | 40.18
40.93 | 2 2 | | 61.03
60.90 | 8329
8321 | 101.25
101.25 | 73.9 | 18,634
17,320 | 97.4 | 12.08 | .0169
.0153 | 2.252 | .047 | 2.615
2.697 | 82.5
83.5 | 27,85 | 4191
4275 | 40.75
40,76 | 3 | | 81.03
81.26 | 8313
8321 | 101.27
101.73 | 74.2
73.9 | 10 OFF | 97.6
98.1 | 11.59
11.17
12.09 | .0141
.0130 | 2.199
2.110
2.041 | .047 | 2.787
2.863 | 84.0
84.8 | 1988
1915 | 4371
4452 | 40.58
40.83 | 5
5
6
7 | | 61.11
58.63 | 8315
7704 | 101:75 | 73.9
79.8 | 16,132
16,762
17,471 | 97.0 | 10.98 | .0120 | 1.964 | .049 | 3.034 | 82.I | 1831 | 4541 | 40.48 | 7 | | 58.75
58.71 | 7696 | 97.81
97.88 | 80.6 | 16,418
16,001 | 98.1
96.9 | 10.87 | .0164
.0148 | 2.323
2.213 | .042 | 2.411 | 85.5
85.1 | 2111
1985 | 3939
4052 | 40.76
40.53 | 10
8 | | 58.59 | 7704
7704 | 97.89
97.86 | 81.0 | 14 941 | 97.6
98.0 | 10.49 | .0141 | 2.168
2.028 | -045 | 2.538
2.655 | 84.2
84.5 | 1957
1803 | 4101
4238 | 40.25 | 10 | | 58.63
58.63 | 7711
7696 | 97.83
97.85 | 79.1 | 14,192 | 95.5 | 10.28 | .0108 | 1.916 | .045
.047 | 2.776 | 84.3 | 1689 | 4373 | 40.21
40.17 | ΞŽ | | 52.88 | 6909 | 88.59 | 84.9 | 13,404
14,021 | 95.8 | 10.60 | .0139 | 2.199 | .042 | 2.924 | 84.4 | 1594
1854 | 4485
3755 | 40.14
40.12 | 12 | | 53.66
53.62 | 6935
6942 | 89.38
89.38 | 83.0
83.7 | 15,309
12,774 | 95.5
95.3 | 10.63
10.59 | .0123 | 2.081 | .047 | 2.412
2.485 | 82.7
83.8 | 1758
1666 | 3860
3964 | 40.23
59.89 | 15 | | 53.00
53.98 | 6929
6915 | 89.37
90.02 | 85.6
85.0 | 12,368
11.600 | 94.5 | 10.48
10.48 | .0103 | 1.923 | .048
.050 | 2.559
2.652 | 83.2
82.5 | 1600
1494 | 4029
4154 | 59.86
59.64 | 17 | | 53.64
46.20 | 6915
6200 | 89.30
76.50 | 83.6 | 10,902 | 93.8 | 10.60 | .0079 | 1.728 | .053 | 2.758 | 82.8 | 1412 | 4264 | 39.66 | 17
18
19
20
21
22
25
26
26
28
29
30
31 | | 46.59 | 6211 | 77.40
76.57 | 84.5
84.6 | 11,074
10,666 | 95.7
95.5 | 10.80 | .0118 | 2.088 | .048
.047 | 2.189
2.254 | 83.3
81.6 | 1658
1588 | 3547
3627 | 39.82
59.88 | 21 | | 46.13 | 6206
6206 | 76.53 | 85.0
85.3 | 9,924
9,456 | 92.5
92.8 | 11.00
11.17 | .0098 | 1:923 | .049
.051 | 21295
2.351 | 82.2
83.6 | 1503
1457 | 3717
3796 | 39.51
39.35 | 22 | | 146.58 | 6206
6200 | 77.29
77.35 | 84.0
84.6 | 8,945
8,725 | 91.9
95.6 | 10.78
10.54 | .0076 | 1.755 | .054
.055 | 2.452 | 84.1 | 1457
1341
1289 | 3918 | 39.52
39.53 | 24 | | 46.46
37.05
56.64 | 5349 | 61.39 | 84.4 | 7.850 | 91.5 | 10.41 | .0100 | 2.015 | .046 | 2.479
1.928 | 78.4 | 1456 | 3989
3253 | 39.93 | 26 | | 37.11 | 5354
5354 | 60.51
61.42 | 83.0
81.7 | 7.431
7.252 | 88.8
88.1 | 11.55
11.17 | .0094 | 1.942 | .051 | 1.979 | 80.9 | 1404
1332 | 3312
5393 | 39.25
39.07 | 27 | | 37.13
37.13 | 5349
5349 | 81.48
61.48 | 85.7
84.8 | 7,147
6,877 | 86.8 | 10.69
11.17 | .0080 | 1.839
1.798
1.775 | .051
.054 | 2.055
2.054 | 77.0
81.2 | 1263
1259 | 5448
5481 | 39.25
39.21 | 29 | | 38.02
25.97 | 5354
4291 | 63.44
39.44 | 84.7
76.8 | 8,841
5.511 | 90.1
81.0 | 11.04
11.53 | .0067 | 1.700 | .055 | 2.156
1.531 | 81.5
76.1 | 1212 | 3546
2677 | 39.21
36.87 | 31 | | 34.91
25.82 | 4304
4296 | 41.06
42.54 | 77.4 | 5,419 | 78.0 | 10.82 | .0106 | 2.055 | .042
.042
.040 | 1.537 | 54.9 | 1377
1351 | 2729 | 37.53 | 33 | | 24.93 | 4296 | 41.08 | 76.5 | 5,441
4,992 | 83.9
78.9 | 9.07
11.17
10.16 | .0095 | 2.033
1.976 | ו אבח. ו | 1.552
1.554 | 80.0
76.6 | 1306
1267 | 2747
2787 | 39.70
37.87 | 34
35 | | 25.87
24.77 | 4291
4291 | 42.59
40.99 | 77.4
75.0 | 4,795
4,821 | 81.7
80.4 | 11.24 | .0087
.0086 | 1.917 | .046
.047 | 1.562
1.566 | 75.6
81.5 | 1225
1212 | 2829
2843 | 38.90
37.58 | 35
34
35
36 | | 25.18
16.66 | 4296
8615 | 41.46
100.47 | 75.3
88.7 | 4.656
5.216 | 78.9
92.3 | 10.88
10.55 | .0085 | 2.400 | 0.047 | 2.253 | 80.I
95.7 | 1199
2418 | 2861
4124 | 37.96
41.07 | 38 | | 16.28 | 8615
8623 | 99.41
98.40 | 68.8 | 5,246
5,545
5,130 | 93.7
92.6 | 9.97 | .0175 | 2.321 | .039 | 2.250 | 93.6
94.1 | 2520
2213 | 4211
4300 | 40.65 | 59
40 | | 15.50
15.79 | 8615
8615 | 97.38 | 70.1 | 5.130 | 90.6 | 10.51 | -0158 | 2.196 | .041 | 2.419
2.552 | 80.9 | 21.59 | 4366 | 40.48
39.78 | 12 | | 16.10 | 8043 | 98.89
97.77 | 70.2 | 4,477 | 93.4
91.8 | 8.38
13.11 | .0145 | 2.151 | .047 | 2.771
2.473
2.532 | 85.9 | 2074
2353 | 4429
5900 | 40.55
40.82 | 41444444445555555555555555555555555555 | | 15.38
15.78 | 8014
8043 | 94.32
96.11 | 73.4
72.5 | 4,487 | 90.7 | 12.00
11.05 | .0178 | 2.360 | .043 | 2.552
2.552 | 82.9
82.9 | 2246
2179 | 3971
4040 | 39.50
40.74 | 4.5 | | 15.80 | 8051
8058 | 96.11
96.15
97.82 | 72.2 | 4,258 | 91.1
93.8 | 10.07
9.56 | .0148
.0144 | 2.197
2.189 | .041 | 2.667
2.687 | 83.2
83.1 | 2066
2070 | 4149
4145 | 40.78
40.50 | 6.7 | | 15.39
15.64 | 8058
8043 | 95.67
97.40 | 73.5 | 3,915
4,056 | 88.9
89.1 | 12.45
11.36 | .0143 | 2.137 | .050 | 2.728 | 81.1 | 2000 | 4211 | 39.66 | 69 | | 15.96 | 8021 | 98.41 | 72.5 | 5,795 | 92.0 | 10.30 | .0119 | 1.999 | _047 J | 2.717 | 85.0 | 1848 | 4225
4350 | 40.35
41.17 | 50 | | 15.03
15.01 | 7587
7573 | 92.47
93.10 | 76.1
76.5 | 4,544 | 89.8
91.2 | 12.48 | .0198
.0180 | 2.519 | .041 | 2.301
2.354 | 85.4
83.5 | 2386
2251 | 3671
3750 | 39.48
40.05 | 52 | | 15.40 | 7587
7573 | 95.04
93.13 | 75.6
75.2 | 5,979
5,724 | 89.0
87.4 | 9.91
10.19 | .0135 | 2.429
2.111
2.049 | .044 | 2.597 | 85.7
84.5 | 1905
1847 | 4059
4109 | 41.09
40.02 | 54 | | 15.51
15.52 | 7573
6867 | 94.96
82.53 | 75.0
78.6 | 5,582
3,510 | 86.2
84.5 | 9.73 | .0111 | 1.915 | .047 | 2.762 | 84.6 | 1704 | 4264 | 40.74 | 56 | | 15.79 | 6835 | 84.76 | 82.1 | 5,629 | 85.1 | 11.08 | .0164 | 2.335 | .042 | 2.277 | 82.9 | 2031
1959 | 3564
3611 | 39.17
39.70 | 58
58 | | 13.19 | 6850
6854 | 84.71
84.03 | 80.4 | 3,116
2,811 |
81.5
79.4 | 10.42 | .0123 | 2.025 | .045 | 2.482 | 79.1
79.1 | 1699
1587 | 3871
3991 | 39.75 | 59 | | 14.60
12.55 | 6860
6414 | 88.02
78.13 | 79.3
81.5 | 2,934 | 85.4
82.5 | 9.65
11.41 | -0097 | 1.871 | .049 | 2.674 | 80.2 | 1556
1839 | 4032
3490 | 39.42
41.33
39.92 | 61 | | 12.58
12.68 | 6449
6473 | 78.14
78.21 | 80.8 | 2,989
2,780 | 78.8 | 10.00 | .0135 | 2.103 | .041 | 2.287 | 78.5 | 1723 | 3618 | 39.59 | 63 | | 12.95 | 8449 | 80.43
78.22 | 79.4 | 2.585) | 78.6 | 10.55 | .0107 | 1.898 | .045 | 2.355 | 80.0 | 1634
1529 | 3717
3823 | 39.99
41.19 | 85 | | 12.53 | 6396
6437 | 78.22
80.38
68.72 | 78.9
79.5 | 2,536
2,576 | 78.1
78.5
80.7 | 11.48 | .0104 | 1.837 | .055
.052 | 2.464
2.508
1.788 | 65.3
81.5 | 1477
1455 | 3857
3908 | 39.49
40.85 | 66 | | 11.51 | 5919
5919 | 71.51 | 79.9 | 3,015 | 80.7
81.0 | 8.19
7.70 | .0143
.0134 | 2.255 | .034 | 1.788 | 94.4 | 1780 | 3286 | 41.09
42.17 | 68
69 | | 11.41
11.38
11.82 | 5919
5913 | 69.97
69.63 | 80.4
79.6 | 2,495
2,522 | 78.5
78.5 | 9.44 | .0128 | 2.088 | .035
.043
.042 | 1.841 | 88.7 | 1612
1526 | 3424
3508 | 41.15 | 70 | | 11.82 | 5913 | 71.65 | 78.4 | 2,320 | 77.0 | 8.06 | .0103 | 1.911 | .043 | 2.004 | 87.4
86.0 | 1456 | 3586 | 41.48
42.55 | 71 | | 144.05 <u>4</u> | וביגט | 72.44 | 77.8 | 2.254 | 76.4 | 7.79 | .0097 | 1.844 | .044 | 2.200 | 85.0 | 1403 | 3649 | 42.62 | 73 | | _ | | t | | | | | , | | | | | | | | | | | | | | |-----------------------------------|------------------|--------------|--------------------------------|---------------------------|----------------------------|----------------------------|--|--|--|--|---|---|---|--|--|--------------------------------------|----------------------|----------------------|-----------------|---| | Run | Altitude
(ft) | 4 F T | Ram pressure
ratio
P1/P0 | Flight Wash
number, No | Englas speed
N
(rpm) | Fuel flow
Wr
(lb/hr) | Exhaust-nossle
outlet area
(sq ft) | Compressor-inlet stagnation fem-
perature, T ₁ | Burner-inlet stag-
nation pressure
P ₃
(lb/eq ft abs.) | Burner-inlat stag-
nation temperature
fr
(°R) | Burner-outlet stag-
nation temperature
T ₄
(OR) | Burner-outlet stag-
nation pressure
(1b/eq ft abs.) | Compressor-inlet
air flow, Wa, 1
(1b/sec) | Corrected engine speed, N-V ^E ₁ (1b/seo) | Burner-commetion
parameter
P ₃ T ₃ | Combustion efficiency The (percent) | Burner pressure loss | Burner pressure-loss | Puel-air ratio | Burner temperature
ratio, T ₄ /T ₃ | | 1 2 | 6000 | 1697
1687 | 1.019 | 0.160 | 7955
7955 | 5305
4680 | 2.28 | 503
502 | 9295
9062 | 903 | 2120 | 8800 | 82.83
82.55 | 8082 | 26,668 | 98.5 | 0.053 | 14.0 | 0.0183 | 2.348 | | 3 | | 1685 | 1.024 | .185 | 7950 | 4175 | 2.43
2.55 | 502 | 8621 | 895
884 | 2003
1885 | 8443
8271 | 83.04 | 8090
8093 | 22,111 | 101.3 | -068 | 17.5 | .0161 | 2.240
2.110 | | .[4] | ĺ | 1685 | 1.026 | .190 | 7692 | 3820 | 2.55 | 498 | 8424 | 862 | 1787 | 8017 | 82.99 | 7854 | 27,613
23,432 | 99.5 | .041 | 9.2 | .0143
.0131 | 2.110 | | 5 6 |] | 1690 | 1,025 | .185 | 7586 | 3350 | 2.55
2.58 | 496 | 6027 | 829 | 1650 | 7609 | 81.50 | 7556 | 20,932 | 99.1 | .052 | 11.5 | .0131 | 1.990 | | . 7 | | 1689
1690 | 1.025 | .185
.195 | 6993
6818 | 2880
2520 | 2.65 | 495 | 7478 | 808 | 1569 | 7048 | 78.08 | 7181 | 17,766 | 101.0 | .058 | 12.5 | .0105 | 1.942 | | 1 8 | 1 | 1686 | 1.025(| .185 í | 6643 | 2220 | 2.77 | 496
496 | 7144
67 3 0 | 789
77 4 | 1465
1395 | 6721 ;
6321 ; | 76.13
72.99 | 6975
6796 | 18,771 | 98.9 | .059 | 12.3 | .0094 | 1.857 | | 9 | i | 1686 : | 1.026 | .190 | 6294 | . 1910 | 2,93 | 496 | 6175 | 749 | 1320 | 5741 | 68.42 | 6439 | 15,276
13,627 | 98.2
99.3 | .061 | 12.4 | .0085 | 1,802
1,762 | | 110 | - 1 | 1683 | 1.028 | -190 | 6136 | 1758 | 2.945 | 497 | 5868 | 737 | 1290 | 5494 | 65.75 | 6271 | 12.697 | 98.6 | .064 | 12.7 | .0076 | 1.750 | | นารไ | - 1 | 1689
1683 | 1.027 | .195:
.195 | 5944
5455 | 1622 | 2.945
2.945 | 497
497 | 5538
4726 | 722
687 | 1270
1210 | 5184 | 62.76 | 6075 | 12,139 | 100.7 | .064 | 12.8 | .0073 | 1.759 | | 13
14
15-
16
17
18 | 35,000 | 494 | 1.024 | 0.185 | 7955 | 1340
1739 | 2.12 | 149 | 2905 | 854 | 2077 | 2771 | 55,55
25,81 | 5575
8552 | 10,226
7,473 | 101.5
93.2 | 0.046 | 12.8 | ,0069 | 1.761 | | 14 | · 1 | 493 | 1.020 | 0.185
.170 | 7692 | 1310 | 2.55 | 450 | 2640 | 817 | 1808 | 2495 | 24.63 | 8261 | 6,469 | 94.7 | .055 | 14.1 | 0.0194
.0150 | 2.432 | | 120 | l | 491
493 | 1.024 | .185 | 7500 | 1220 | 2.55 | 457 | 2552 | 798 | 1726 | 2414 | 24.63 | 7995 | 6,262 | 93.21 | .054 | 13.9 | .0141 | 2.185 | | 117 | - 1 | 493 | 1.020 | .1701
.170 | 7386
6993 | 1172
970 | 2.57 | 448 | 2520
2343 | 793
760 | 1697
1538 | 2584
2214 | 24.58
24.14 | 7940 | -5,860 | 94.9 | .054 | 13.5 | .0136 | 2.140 | | 18 | | 493 . | 1.020 | .170 | 6643 | 805 | 2.72 | 448 | 2175 | 733 | 1440 | 2050 | 23.20 | 7524
7148 | 5,467
4,921 | 95.4
98.9 | .055
.057 | 12.8
12.8 | .0098 | 2.024 | | 19
20 | 20 AAA | 494 | 1.024 | .185 | 5944 | 590 | 2.91 | 449 | 1782 | 679 | 1240 | 1670 | 20,27 | 6390 | 3,881 | 91.6 | .063 | 13.4 | .0092 | 1.826 | | 21 | \$5,000 | 307
308 | 1.026 | .200 | 7955 | 1121 | 2.48 | 637 | 1816 | 855 | 2110 | 1732 | 15,97 | 8671 | 4,552 | 94.1 | 0.046 | 12.9 | 0.0198 | 2.468 | | 122 | ì | 308 | 1.026 | .185 | 7955
7955 | 1062 | 2.50
2.55 | 442 | 1805
1790 | 865
853 | 2083
2080 | 1725
1710 | 15.99 | 8623 | 4,668 | 93.7 | .045 | 12.6 | .0193 | 2.414 | | 22 | 1 | 307 | 1.029 | .200 | 7692 | 902 | 2.55 | 436 | 1702 | 808 | 1875 | 1815 | 16.03
15.75 | 8679
8392 | 4,602 | 95.5
95.4 | .045
.051 | 12.1 | .0187 | 2.415 | | 24
25
26 | ſ | 305 | 1.030 | 205 | 7500 | 824 | 2.55 | 447 | 1611 | 800 | 1766 | 1527 | 15.45 | 8078 | 4,012 | .91.3 | .052 | 13.8
13.4 | .0162 | 2.321 | | 26 | - } | 303
308 | 1.030 | .205 | 7500 | 778 | 2.63 | 442 | 1594 | 798 | 1810 | 1510 | 15.56 | 8130 | 5,965 | 101.9 | .053 | 12.8 | .0142 | 2.25B | | 27 | - 1 | 303 | 1.026 | .180 | 7586
6993 | 784
670 | 2.57 | 435
437 | 1493
1458 | 787
754 | 1748
1604 | 1512 | 15.71 | 8066 | 4.108 | 97.4 | .051 | 12.4 | .0141 | 2.219 | | [28] | - 1 | 304 | 1.023 | 180 | 6643 | 587 | 2.75 | 436 | 1361 | 730 | 1490 | 1382
1284 | 15.02
14.50 | 7822
7248 | 3,574
3,194 | 94.5
91.3 | .052
.057 | 11.8
12.9 | .0128 | 2.127 | | 29 | - 1 | 306 | 1.036 | -220 | 6643 | 558 | 2.94 | 438 | 1359 | 726 | 1421 | 1279 | 15.06 | 7234 | 3,139 | 91.4 | .059 | 12.0 | 0104 | 2.041 | | 30
31 | 1 | 306
306 | 1.029 | 500 | 5944
5944 | 449 | 2.94 | 440 | 1123 | 677 | 1310 | 1078 | 13.53 | 6455 | 2,423 | 90.0 | .062 | 11.6 | .0095 | 1.935 | | 122 | | 300 | 1.020 | .185 | 3944 | 455 | 2.91 | 437 | _1128 | 678 | 1505 | 1085 | 12.64 | 6479 | 2,551 | 88.0 | .055 | 12.0 | .0097 | 1.926 | NACA RM E51113 (a) Compressor rotor. (c) Interior of modified combustor liner. Modified (b) Original and modified combustor liners. C-28345 (d) Turbine rotor. Figure 1. - Components of prototype J47D (RK1-1) turbojet engine. | Station | Total-
pressure
tubes | Static-
pressure
tubes | Wall statio-
pressure
orifices | Thermo-
couples | |---------|-----------------------------|------------------------------|--------------------------------------|--------------------| | 1 | 32 | 8 | 5 | 4 | | 3 | 20 | o | 4 | 6 | | 4 | 5 | 1 o | 0 | 0 | | 6 | 30 | (o | 1 4 | 24 | | 8 | 0 | 0 | 0 | 25 | Figure 2. - Cross section of turbojet-engine installation showing sections at which component instrumentation was installed. 0.64; altitude, 15,000 feet. (b) Reynolds number index, 0.18; altitude, 45,000 feet. Figure 3. - Compressor performance maps at flight Mach number of 0.19. 4000 5000 9000 10,000 (b) Experimental variation at a flight Mach number of 0.19. 6000 7000 8000 Corrected engine speed, $N/\sqrt{\theta_1}$, rpm Figure 4. - Variation of exhaust-nozzle area with altitude and corrected engine speed on electronic control schedule. (a) Relation between corrected air flow and pressure ratio. Figure 5. - Effect of altitude on compressor operating lines; flight Mach number, 0.19; engine on electronic control schedule. (b) Relation between corrected air flow and corrected engine speed. Figure 5. - Concluded. Effect of altitude on compressor operating lines; flight Mach number 0.19; engine on electronic control schedule. (a) Relation between corrected air flow and pressure ratio. Figure 6. - Effect of flight Mach number on compressor operating lines; altitude 25,000 feet; engine on electronic control schedule. (b) Relation between corrected air flow and corrected engine speed. Figure 6. - Concluded. Effect of flight Mach number on compressor operating lines; altitude 25,000 feet; engine on electronic control schedule. (b) Effect of flight Mach number; altitude 25,000 feet. Figure 7. - Effect of corrected engine speed and flight condition on compressor efficiency; engine on electronic control schedule. Figure 8. - Effect of Reynolds number index on compressor performance. (b) Effect of Mach number altitude 25,000 feet. Figure 9. -
Effect of flight conditions on combustion efficiency; engine on electronic control schedule. Figure 10. - Effect of exhaust-nozzle area on combustion efficiency; flight Mach number, 0.19. Figure 11. - Effect of altitude on combustion efficiency: modified combustors; flight Mach number, 0.19; engine on electronic control schedule. Figure 12. - Comparison of original and modified combustion-chamber performance. Figure 13. - Effect of combustion-temperature ratio on pressure-drop coefficient. (a) Turbine efficiency. Figure 14. - Variation of turbine-performance parameters with altitude and corrected engine speed; flight Mach number, 0.19; engine on electronic control schedule. Figure 14. - Continued. Variation of turbine-performance parameters with altitude and corrected engine speed; flight Mach number, 0.19; engine on electronic control schedule. (e) Corrected turbine gas flow. Figure 14. - Concluded. Variation of turbine-performance parameters with altitude and corrected engine speed; flight Mach number, 0.19; engine on electronic control schedule. SECURITY INFORMATION 3 1176 01435 1564